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7

Scientific Evidence for  
Causation in the Population

INTRODUCTION

This chapter describes the kinds of scientific evidence used for establish-
ing a general causal relationship between exposure and disease, an impor-
tant input to presumptive service-connection decisions. Unlike individual 
service-connection claims, in which a particular veteran has to make a case 
that a particular condition affecting him or her was caused by or aggravated 
by military service, a presumptive service connection applies to a group, or 
population of veterans. Presumptive service connections remove the burden 
of proof from individual veterans, but establishing presumptions necessi-
tates an assessment of the scientific evidence for population causal claims 
(i.e., was some group of veterans exposed to conditions or substances that 
aggravated existing or caused new health problems after service separation). 
More specifically, the goal is often to establish whether, in a population of 
individuals, exposures received by members of the population resulted in 
a change in the frequency of occurrence or in the average severity of a dis-
ease. For example, we might ask whether the frequency of non-Hodgkin’s 
lymphoma (NHL) among Vietnam veterans who were exposed to benzene 
during service is higher than the frequency among those who were not. If 
so, then we might assert that exposure to benzene is capable of causing 
NHL. The causal claim about the population does not mean that every 
veteran exposed to benzene during service will develop NHL or that every 
case of NHL would not have happened but for benzene exposure. On the 
population level, causal claims typically involve how risk (the probability 
of disease) changes in response to exposure. 
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In this chapter we will focus on the scientific issues involved in 
establishing these sorts of causal claims. We will review the issues facing 
scientists or others who review evidence to collectively decide on popula-
tion causal claims. The next chapter provides a framework for doing so. 
At the start of this chapter, we discuss the types of scientific information 
considered in evaluating the strength of evidence for inferring causation. 
Then we discuss how epidemiologists define and assess association and 
how association differs from causation. This distinction is essential to 
understanding prior approaches to presumptive disability decision making 
and also this Committee’s proposed approach. In Appendix J, we offer an 
extended discussion of what we mean by causation and how it is modeled 
statistically. We have placed this material in an appendix, not as a reflec-
tion of its importance, but because the topic is too complicated to cover 
in a short section. 

Next we discuss the scientific strategies used to establish association, 
and lastly we discuss the scientific strategies used to move beyond just 
determining the presence of an association to inferring causation. We 
conclude the chapter by discussing uncertainty—both with respect to 
association and with respect to causation. We leave to the next chapter 
a discussion of strategies for synthesizing potentially diverse sources of 
evidence into a single overall judgment of the strength of evidence for a 
causal claim. 

SOURCES OF EVIDENCE

Evidence about population causal claims (hereafter just “causal 
claims”) comes from a variety of sources. In some cases, we have exten-
sive knowledge about the mechanism by which exposure causes disease. 
For example, we do not need a randomized clinical trial to establish that 
bullet or shrapnel wounds have a deleterious effect on health. In other 
cases, such as low levels of exposure to lead and cognitive deficits in chil-
dren, we know much less about the mechanisms and turn to other types of 
scientific evidence including findings of epidemiologic studies. Any scien-
tific assessment of a causal claim combines the mechanistic knowledge and 
statistical evidence from epidemiologic studies. In this section we briefly 
survey the types of statistical evidence used to establish causal claims, 
and then we sketch the types of toxicologic, biologic, and mechanistic 
knowledge used to support or reject causal claims. By statistical evidence 
we mean the quantitative relationships between a set of measured vari-
ables in a sample. Case reports about individual patients may be useful 
for suggesting etiologic hypotheses, particularly with exposures that are 
followed quickly by disease onset.
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Randomized Clinical Trials

The most persuasive human evidence for establishing a causal relation-
ship comes through experimental studies in which investigators control 
exposure. Randomized clinical trials (RCTs) are the counterpart in humans 
to the controlled laboratory experiment with animals. In clinical trials, 
the exposure (usually considered as potentially beneficial, such as a new 
medication) is allocated randomly to the study population in such a way 
that the treated and untreated groups are otherwise equivalent, at least in 
expectation. If the randomization process has been successful, then any dif-
ferences between the treated and comparison groups should reflect a causal 
relationship between treatment and disease (or outcome) risk. Randomiza-
tion assures comparability of the two groups on factors that may affect the 
occurrence of the outcome.

Although the RCT is simple in concept, proper execution in human 
populations is often quite challenging and complicated. Even if random-
ization is successful in assuring comparability of exposed and comparison 
groups, validity of results for causal inference is not assured. For example, 
there are powerful placebo effects that operate in humans, which can be 
eliminated, in some instances, by concealing treatment status from the 
study participants. More subtle problems can arise when the doctors or 
others administering the treatment and collecting the outcome data are 
aware of treatment status. This potential for bias has prompted the use of 
the “double-blind” design, in which neither the study personnel in contact 
with participants nor the participants themselves know the treatment status. 
A refinement of this design is the crossover study, in which treatment and 
nontreatment are given in random order to each participant, allowing each 
person in the study group to be his or her own control. This design illus-
trates the kind of evidence we would like to have to draw causal claims, 
since we directly observe the response of the same person when they are 
treated and not treated, so that the treatment can be reasonably inferred 
to be the “cause” of any differences in response under the two conditions. 
Unfortunately, crossover trials are a practical approach only for studying 
short-term responses to agents for non-fatal conditions, so that they can-
not be used for assessing effects of environmental exposures on chronic 
diseases.

In most other designs, including RCTs of standard design and most 
observational studies, we have to base such conclusions on differences 
in rates between exposed and unexposed groups of different individuals, 
rather than on the responses of the same individual in exposed and unex-
posed states. Interpretation of differences in outcome frequency as a causal 
effect when comparisons are made between different groups requires a 
form of inference known as “counterfactual.” Using the counterfactual (i.e., 
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counter to the facts) we infer what would have happened in the exposed 
group had the exposure been some alternative by making a comparison 
with the outcomes of others who actually experienced the different expo-
sure. The counterfactual approach needs comparability of the exposed and 
comparison groups. 

RCTs and other experiments involving humans are ethically limited in 
the range of questions to which they can be applied. Many of the major 
questions of public health—for example, the effects of air pollution or 
pesticides on human health—cannot be addressed through RCTs because it 
is not ethical to expose humans experimentally to substances in quantities 
that are presumed harmful. For such questions, we are limited to passively 
observing the health of people “naturally” exposed—that is, to obser-
vational studies. Nonetheless, the model of the RCT remains useful as a 
framework for considering limitations of findings of observational studies. 
Randomized interventions can be ethically carried out to reduce exposure 
to harmful agents (e.g., tobacco use).

Observational Studies

In an observational study, the investigator does not control exposure of 
the people in the study and does not intervene in any way in the population 
under study. Although observational studies may lack the comparability of 
exposed and non-exposed characteristic of controlled experiments, they are 
nonetheless capable of providing evidence about the relationship between 
exposure and health and are generally the only option available to obtain-
ing human evidence of the effect of potentially harmful exposures. 

Broadly speaking, observational study designs fall into three categories: 
cross-sectional studies, cohort studies, and case-control studies. In cross-
sectional studies, a variety of factors are recorded at a particular point in 
time. In cohort studies, persons exposed or unexposed to a given factor are 
observed over a period of time for health effects related to the exposure. 
The case-control study compares persons with a given disease (cases) to 
those without the disease (controls) with regard to their history of expo-
sure. Each of these general designs has appropriate analytic strategies, and 
each design has its own strengths and weaknesses. There are variations 
of each of these approaches, and a few additional approaches as well (for 
example, case-crossover studies). These designs are well described in stan-
dard epidemiologic references. 

One general difficulty of observational studies, regardless of design, 
is that exposure is not randomized. Rather, exposure status may be deter-
mined by where people live or work, what they eat, what social group they 
belong to, or by a host of other factors that can be associated with disease 
risk. As a consequence of these other factors, associations between expo-
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sures and disease risk may occur even if the exposure does not cause the 
disease. Conversely, no association may be measured when the exposure 
actually does cause disease because these factors act to reduce the effect.

Toxicologic, Mechanistic, and Biologic Knowledge

In addition to randomized clinical trials and observational studies, 
which provide statistical evidence of a relationship between exposure and 
disease, a wide variety of other types of scientific evidence may be crucial 
for inferring a causal relationship between exposure and disease (IOM, 
2006a,b; IOM/NRC, 2005). Controlled laboratory experiments with ani-
mals and research in in vitro systems and other relevant biological, physi-
cal, or even social data can be used to assess the likelihood that a given 
substance or circumstance can cause a particular human health effect. 
Approaches to assessing the combined evidence from human and animal 
investigations, as well as from in vitro systems, have been formulated by 
a number of agencies including the International Agency for Research on 
Cancer (IARC, 2006b), the Institute of Medicine (IOM) (IOM, 2006b; 
IOM/NRC, 2005), and the Environmental Protection Agency (EPA, 2005). 
These formalized approaches offer guidance on assessment of evidence and 
relative weighting of various lines of evidence.

Even without statistical evidence from epidemiologic studies, the find-
ings of animal studies and mechanistic investigations on how an agent 
causes a health effect can be sufficiently convincing to support a causal 
conclusion. For example, IARC identified benzo(a)pyrene as a human 
carcinogen primarily based on non-epidemiologic evidence (Straif et al., 
2005). However, we infrequently amass this level of biological understand-
ing for agents affecting human health. More typically, non-epidemiologic 
lines of research are considered to support the conclusion that a substance, 
or chemical, “probably” causes, or is “likely” or “reasonably anticipated” 
to cause an adverse effect such as cancer or other health endpoints (e.g., 
EPA, 2005; IARC, 2006b; NTP, 2005; NTP CERHR, 2003, 2005). When 
there are epidemiologic findings supporting an association between an agent 
and disease, however, experimental or other biological evidence may pro-
vide sufficient weight and understanding for scientists to conclude that the 
association is due to a causal relationship. For example, in several species 
the agent may produce the same effect as observed in human studies, and 
by a mechanism that is conserved and relevant across species with key fea-
tures of the mechanism observed through experiments in human cell lines 
or other systems. 

As a case in point, epidemiologic, animal, and mechanistic data were all 
considered in establishing that industrial exposure to butadiene can cause 
lymphohematopoietic cancers (IARC, 1999). Epidemiologists showed that 
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styrene-butadiene exposed rubber workers had elevated lymphohemato-
poietic cancer rates. Toxicologists showed that potentially carcinogenic 
metabolites of butadiene in butadiene-exposed workers activated potential 
oncogenes, providing mechanistic knowledge on carcinogenesis, and biolo-
gists induced tumors in mice and rats, both with exposure to butadiene and 
to a known metabolite that occurs in humans and mice and rats, providing 
animal evidence. 

Formaldehyde provides a contrasting example. IARC (2006a, sec. 5-2) 
noted that epidemiologic studies found “strong but not sufficient evidence 
for a causal association” between formaldehyde exposure and leukemia. 
Their interpretation of the finding as causal was guarded because of some 
limitations in the several positive studies (e.g., small numbers of deaths) and 
lack of finding of effect in a high-quality study. There was uncertainty with 
regard to possible underlying mechanisms. The IARC monograph noted 
lack of good rodent models for human acute myeloid leukemia. It also 
considered various possible mechanisms, “such as clastogenic damage to 
circulatory stem cells” (IARC, 2006a, sec. 5-4). Unable to identify a mecha-
nism for the induction of leukemia in humans from formaldehyde and data 
to support it, IARC did not conclude that formaldehyde was a known cause 
of human leukemia. Golden et al. (2006) have advanced arguments that 
the relationship could not be causal. For example, they argued that inhaled 
formaldehyde is so reactive that it is unlikely to travel as formaldehyde 
from the upper airways to the bone marrow; also they argued that “there is 
no indication that formaldehyde is toxic to the bone marrow/hematopoietic 
system” as are other known leukemogens benzene, ionizing radiation, and 
chemotherapeutic agents (Golden et al., 2006, p. 146).

ASSOCIATION AND CAUSATION

Association

Absent strong mechanistic understanding, the first step towards estab-
lishing a causal relationship between exposure experienced by people and 
a disease is to establish a statistical association between exposure and the 
disease. Exposure and disease are positively associated in a group if the inci-
dence of disease among those exposed is higher than the incidence among 
those not exposed. For example, in the early 1950s Doll and Hill demon-
strated that tobacco smoking and lung cancer mortality were associated. 
In a cohort of British physicians, lung cancer mortality was much higher 
among people who smoked 25 g of tobacco daily compared with those 
who didn’t smoke (Doll and Hill, 1954, p. 1530). Even though a detailed 
mechanism between inhaling smoke and contracting lung cancer was not 
evident, a vague but plausible mechanism based on the carcinogenic proper-
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ties of tobacco tar allowed scientists to hypothesize that the association was 
produced by a causal relationship. Had there been no observed difference in 
lung cancer mortality between smokers and nonsmokers, they would have 
likely assumed that smoking had no causal influence on lung cancer.

The strength of association between exposure and disease is typically 
measured with a statistic called the relative risk (RR). RR is the ratio 
of the incidence of disease among the exposed over the incidence in the 
unexposed:

RR
incidence

incidence
= =( )

( )
exposed

unexposed
# exposed with disease / # exposed

# not expoosed with disease / # not exposed

An RR of 1.0 means that the frequency of disease among the exposed 
is the same as among the unexposed. An RR of 10 means that the rate of 
disease among the exposed is 10 times as high as among the unexposed. 

A high RR does not imply a high absolute risk in the population. If, 
for example, one in a million unexposed individuals and 10 in a million 
exposed individuals get the disease, then the RR is 10, even though the 
chances of getting the disease among those exposed is only 1 in 100,000. 

Another measure of association, commonly used in case-control 
studies, is the odds ratio (OR): 

OR = # with disease & exposed / # with diseasee & not exposed
# without disease & exposed / # without disease & not exposed

# with= ddisease & exposed / # without disease & expposed
# with disease & not exposed / # withoout disease & not exposed

From this formula, it can readily be seen that the OR, expressed in the 
first line as the odds of exposure in cases divided by the odds of exposure 
in controls, is also (second line) the odds of disease in the exposed divided 
by the odds of disease in the unexposed. The OR has the desirable property 
of being approximately equal to the RR if the disease is rare (Greenland 
and Thomas, 1982). This is true even though the absolute risks in exposed 
and unexposed cannot be estimated from case-control studies. 

Association Is Not Causation

Association is not the same as causation. It is prima facie evidence 
for causation, but not sufficient by itself for proving a causal relationship 
between exposure and disease. For example, although they did not record 
its presence, Doll and Hill would presumably have found a high positive 
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association between having tar-stained fingers and lung cancer mortality 
in their study. Clearly having tar stains on one’s fingers does not by itself 
cause lung cancer, but it could be associated with lung cancer risk because 
heavier smokers, at greater risk for lung cancer, would also be more likely 
to have tar-stained fingers. 

Unlike associations, causal claims support making counterfactual claims, 
that is, claims about what the world would have been like had something 
been different, or changed. For example, what would have been the rate of 
lung cancer mortality among a group of smokers had they been prevented 
from smoking? For this, the counterfactual claim would be the rate of lung 
cancer mortality among never smokers. What would have been the rate of 
lung cancer mortality among those with tar-stained fingers had we elimi-
nated their stains with special soap? Although tar stains and smoking are 
both associated with lung cancer, we can answer these questions because we 
know the causal mechanisms: smoking is a common cause of tar stains and 
lung cancer, but tar stains by themselves have no effect on lung cancer mor-
tality. Service-connection claims require the same attention to counterfactual 
questions: what would have been the rate of adult-onset type 2 diabetes had 
Vietnam veterans not been exposed to Agent Orange, for example. 

Claims about association alone do not support the sorts of claim that 
must underlie presumptive service connections, while causal claims do. We 
call an association that arises in a population from an exposure that causes 
disease a causal association. Associations are termed spurious if they arise 
for some other reason. For example, the association between tar-stained 
fingers and lung cancer is spurious.

Spurious associations can arise in many ways. One is from a common 
factor (confounder) that is associated with the exposure under study and 
also a cause of the disease of interest, and another is from reverse causality 
(the disease is a cause of exposure) as depicted in Figure 7-1. 

 In the context of presumptive service connections, exposure typically 
occurs prior to the medical condition under consideration. Thus, we can 
almost always rule out the possibility that a medical condition was a cause 
of exposure, but the development of disease may influence apparent expo-
sure. For example, it has been speculated that early subclinical manifesta-
tions of diabetes could increase storage of polychlorinated biphenyls (PCBs) 
in the body, leading to apparent associations of PCBs with diabetes even 
when the exposure is measured years before the emergence of the disease. 
More intuitively, people developing asthma might choose to not have cats 
if the presence of a cat exacerbated their asthma. The inverse association 
that would be observed between asthma and cat ownership would repre-
sent reverse causation and not a causal, protective effect of cats on risk for 
asthma. Thus, reverse causation may produce a spurious association even 
with carefully collected prospective data. 
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FIGURE 7-1

FIGURE 7-1  Causal and spurious associations.

If we can measure potential confounders (i.e., common causes) that 
might give rise to spurious association, then statistical adjustment can be 
used to remove the part of the observed association that arises spuriously 
from confounders. We discuss this strategy in a later section. 

There is also the possibility that exposure causes disease, but that the 
two are not associated in the population under study. For example, if a 
confounder produces negative association between exposure and disease, 
but the true causal relationship produces positive association, and the two 
associations (true and confounded) are of roughly same magnitude, then 
the observed association will be small as represented in Figure 7-2. Note 
that dropouts are excluded from this example. Fortunately, because hiding a 
causal association requires a spurious association of similar magnitude but 
opposite sign as the causal association, this situation occurs infrequently. 

Confounder

Exposure Disease
+

+ –

FIGURE 7-2

FIGURE 7-2  Scenario for causation without association.
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The Problem of Bias

Even if confounding and reverse causation can be ruled out (or statisti-
cally controlled for, as we discuss below), observational studies might still 
be affected by other forms of bias, including information bias and selec-
tion bias. Bias in this context does not suggest prejudice on the part of the 
researcher, but rather denotes systematic error arising from the collection 
of information or the selection of participants that produces an observed 
association not attributable to an underlying causal relationship between 
exposure and disease. For example, systematic error might occur in a case-
control study of patients with pancreatic cancer in which most of the cases 
have died before they could be interviewed. If the interviewer relies on 
family members for information about exposures of the dead person but 
on living controls themselves, then the quality of the exposure information 
is likely to differ for the cases and the controls. Differential quality of data 
for cases and controls can in turn easily distort the true association between 
an exposure and a disease. This would be an example of information bias, 
a broad class of bias that relates to the quality of data collected. Another 
kind of bias is selection bias, which occurs when the selection process 
by which the study sample is derived distorts the relationship between 
exposure and outcome. For example, suppose half of the patients in the 
treatment arm of an RCT drop out of the study from side effects, while no 
one from the control arm drops out, and suppose that the dropouts are the 
ones who began the study in worse health. Even if the treatment has no 
benefit whatsoever on the outcome, the treated group will appear to fare 
better than the untreated group. Once possible biases are identified, their 
possible impact on the results can be assessed through sensitivity analysis 
(discussed below). 

EVIDENCE FOR ASSOCIATION

Although it is not sufficient for establishing causation, association is 
nevertheless prima facie evidence for causation, and the lack of association 
is prima facie evidence for lack of causation. Thus, if mechanistic knowl-
edge is insufficient to settle the issue, a first stage in any evidence-based 
approach to presumptive service connection is to empirically establish and 
quantify the level of association in the service population under consider-
ation, or in similarly exposed populations. 

Epidemiologists (e.g., Rothman, 2002) use risk measures such as the 
RR and the OR to quantify the association between exposure and disease 
in a population. Other measures might also be of interest, such as the 
attributable fraction (AF)—the proportion of disease in either the total 
population or an exposed subgroup that is caused by exposure—which is 
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particularly relevant for compensation policy (see next chapter). This report 
uses the terminology service-attributable fraction (SAF) when the subgroup 
of interest is a military population. More complex conceptual and statistical 
models are needed when there are several risk factors to be considered in 
combination, as will be discussed later in this chapter. 

Risk measures are estimated by applying statistical techniques to data 
from a particular sample drawn from the population of interest (e.g., a 
study of 1,000 randomly selected veterans of a particular conflict). The 
result of this process is an estimate of the population risk measure (e.g., 
the RR), together with a measure of the uncertainty in those estimates (a 
standard error or confidence interval) caused by the inherent variability in 
a random sampling process. Note that these uncertainty estimates usually 
account only for random variation, not the consequences of any bias. 

Statistical techniques are also used to test specific hypotheses, particu-
larly the null hypothesis that there is no association between exposure and 
disease in the population. The null hypothesis is of particular interest—
unless it can be rejected, there is insufficient empiric evidence to conclude 
the existence of an association in the population. 

The statistical tests related to the null hypothesis are referred to as sig-
nificance tests, and the test results are commonly expressed in the form of 
a P value, the probability of observing a sample result at least as extreme 
as that observed in the sample if the null hypothesis were true. Note that 
the P value does not provide the probability that the null hypothesis is true 
given the observed data. That would require specification of one’s prior 
belief in the null hypothesis before seeing the data. Additionally, failing 
to find the P value needed to reject the null hypothesis at some level of 
probability does not exclude the possibility of an association. There should 
be enough precision to rule out a counter explanation that the study was 
inadequate to detect a meaningful effect size. 

EVIDENCE FOR GOING BEYOND ASSOCIATION TO CAUSATION

If an association has been established, the next (and more difficult) 
task is to assess the evidence for causation by trying to eliminate alternative 
explanations to causality for the association. For example, tobacco com-
panies and some academic researchers initially dismissed the association 
between smoking and lung cancer by proposing explanations other than 
causation. Arguments were advanced such as: perhaps a poor economic 
background would expose someone to conditions besides smoking that 
would lead to lung cancer and would also make them more likely to smoke 
or perhaps there are genes that dispose people to smoke and also to be 
more susceptible to lung cancer. Only after some years of epidemiologic 
research, animal studies, and scientific debate did the scientific community 
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reject all alternative explanations and conclude that the association between 
smoking and cancer is causal. Postulating and eliminating alternatives are 
core skills in observational research. This process can use data from many 
sources, including the basic sciences and toxicology. If reasonable alterna-
tives are possible, then we cannot move beyond association to a firm causal 
conclusion.

Experimental Control: Inferring Causation in RCTs

Randomized clinical trials remove two of the possible alternative expla-
nations of an observed association: confounding and reverse causality. By 
assigning treatment (exposure) randomly, the design removes the influence 
of any confounder that might influence exposure (Figure 7-3a), and the 
influence of the outcome on exposure, if there is any (Figure 7-3b). Done 
properly, and setting aside the play of chance, only a causal relationship 
from exposure to health outcome should produce observed association in an 
RCT (Figure 7-3c). However, RCTs are generally not possible for the kinds 
of causal questions facing VA in presumptive disability decision making.

Statistical Control: Inferring Causation from Observational Studies

Adjusting for Confounding

When associations are found in observational studies, the first approach 
for removing spurious associations from confounders is statistical control 
of characteristics that may differ between exposed and unexposed persons 
(i.e., adjustment). Multiple regression models are one way to estimate the 
association between exposure and outcome after adjusting for charac-

Exposure
Health

Outcome
Randomizer

Confounder

Exposure
Health

Outcome

Randomizer

Exposure
Health

Outcome

Randomizer(a) (b)

(c)

FIGURE 7-3

FIGURE 7-3  The power of randomization.
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teristics of participants that might confound the results. If investigators 
have successfully measured characteristics that distort the results, then 
adjustment of these factors will help separate a spurious from a causal 
association. 

For example, suppose we conduct an observational study of veterans, 
each exposed during service to some level of a toxin that can permanently 
degrade respiratory function. Suppose further that older veterans are more 
likely to have been exposed to more of the toxin, as it was used more fre-
quently in the early segment of a war. Since age (after military service) also 
naturally degrades respiratory function, it is a confounder of the association 
between the exposure and respiratory function in this study (Figure 7-4) 
and must be included as a covariate in a multiple regression to adjust for 
its biasing effect. If age is the only such confounder in the study, and it is 
measured accurately, then we can indeed separate the spurious from the 
causal association statistically.�

Two problems are common in such an approach, however. First, unlike 
randomization, which can eliminate the influence of all confounders without 
having to identify and measure any of them, appropriate statistical adjust-
ment for confounders requires identifying and measuring all of them. If, 
for example, age were not the only confounder of the association of expo-
sure with respiratory function (Figure 7-5), then the association between 
exposure and respiratory function, statistically adjusted for age, would still 
combine both spurious and causal association, and thus present a mislead-
ing estimate of the effect of exposure on respiratory function. 

Deciding which variables to control for in a statistical analysis of the 
association between exposure and disease depends upon knowledge about 
the possible mechanisms connecting them. For example, dozens of obser-
vational studies, some involving thousands of subjects, have shown an 
association between watching TV and childhood obesity (IOM, 2006a). 
Can we move beyond an association and say that watching TV causes 
childhood obesity? 

These studies include a variety of statistical adjustments, depending on 
the mechanisms the researchers consider important. The primary mecha-
nisms thought to connect TV and obesity are shown in Figure 7-6. Thus, 
several studies controlled for socioeconomic status (SES), as a child from a 
low socioeconomic status home might be allowed to watch more TV and 
also allowed to eat a higher proportion of high-calorie/low-nutrition foods 

�Assuming all relations are linear, that is, Respiratory Function = β1Exposure + β2Age + an 
“error” term ε ∼ N(0,σ2), and all boxed variates standard normal, then the expected observed 
covariance (association) between exposure and respiratory function is β1 + β2φ. The expecta-
tion of the estimate of the association between exposure and respiratory function adjusting 
for age in fact equals β1. 
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FIGURE 7-6  TV and obesity.

FIGURE 7-4  Age as a confounder.

FIGURE 7-5  Unmeasured confounders.



Copyright © National Academy of Sciences. All rights reserved.

Improving the Presumptive Disability Decision-Making Process for Veterans 
http://www.nap.edu/catalog/11908.html

164	 IMPROVING THE PRESUMPTIVE DISABILITY DECISION-MAKING PROCESS

(“junk” foods). Several studies attempted to separate out the potential con-
tribution of TV to obesity through replacing or suppressing exercise, which 
in turn would lead to more obesity, or by increasing caloric intake, either 
through increasing exposure to food marketing, or by increasing appetite 
through other means (e.g., people like to snack when they are relaxing 
passively in front of a TV). Being able to identify these mechanisms allows 
us to identify and control for potential sources of spurious association and 
also to tease apart the importance of a variety of possible mechanisms. 

Measurement Error

A further problem in adjusting for spurious associations involves mea-
surement error. If a confounder has been included in the statistical analysis 
as a covariate but has been measured poorly, then the included variable 
is only a surrogate for the true variable. This is equivalent to partially 
omitting the variable and thus does not allow all confounding bias to be 
removed from the estimate of the causal association (Kennedy, 2003). The 
more measurement error in the confounding variables the greater the poten-
tial for incomplete control of bias. 

Another problem similar to measurement error occurs when covariates 
are measured too coarsely. If, for example, TV was not measured in minutes 
per day, but rather as high, medium, and low, then differences in TV watch-
ing levels within these coarse categories could still affect the probabilities of 
exposure to junk food commercials. Statistically adjusting for this imprecise 
measure of TV would fail to remove all confounding. 

To summarize, statistically adjusting for confounders can separate the 
causal from the spurious association between exposure and disease, but it 
can do so completely only if all confounders have been identified, measured 
accurately, and represented in a valid statistical model. Thus, in assessing 
a report on a study that claims that adjustment for confounding has been 
made, the adjusted association estimates the causal association if the study 
has

•	 included all reasonable confounders, 
•	 measured them with reasonable precision and accuracy, and
•	 used them in a valid statistical model.

Instrumental Variables 

An alternative to measuring and adjusting for confounders is instrumental 
variable estimation, a technique favored by econometricians (Kennedy, 2003) 
but not yet widely used in epidemiology (Greenland, 2000). An instrumental 
variable must be related directly to the putative cause but independent of all 
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potential confounders. Under this condition, we can separate variation in 
the cause that might spuriously come from the confounders or from reverse 
causation from true variation in the cause that will translate to variation in 
the effect. By using the instrument to show how much of the variation is not 
from the confounders and not from reverse causation, we can then statisti-
cally adjust the observed association between cause and effect without even 
measuring the confounders or being concerned about reverse causation. 

An example of an instrumental variable might be distance from the 
hypocenter for veterans of a nuclear weapons test. The true causal variable 
here would be their ionizing radiation exposure. For some participants this 
may have been measured by a film badge dosimeter, but these measure-
ments are incomplete and inaccurate. However, one could use the mean of 
the measured doses for all participants located at the same distance from 
the hypocenter as an instrumental variable for assigning dose to all par-
ticipants, and then examine the relationship between these assigned doses 
and subsequent cancer risk. Assuming a Service member’s assignment to a 
particular location during the test was effectively at random with respect to 
potential confounders (Service members weren’t assigned to locations based 
on their future cancer risks), this would be expected to yield an unbiased 
assessment of the exposure-response relationship (Figure 7-7). 

Although instrumental variable estimation is a potentially powerful 
strategy for separating causal from spurious association, it depends heavily 
on the availability of an informative instrumental variable and on the untest-
able assumption that the instrument is independent of all the other potential 
confounders and not an independent risk factor for disease given radiation 
dose. Thus, its practical applications in epidemiologic research are limited.

Other Guides to Causal Knowledge

There have been several attempts to create sets of criteria to guide 
scientific judgments when moving beyond observed association to causa-
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Unmeasured
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distance
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hypocenter

FIGURE 7-7

FIGURE 7-7  Instrumental variable.
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tion. Some of these criteria can be traced to the “canons of inference” 
proposed by John Stuart Mill (1862). In the early days of microbiology, 
Koch developed his famous “postulates” as formal criteria for establishing 
a causal association of a clinical infectious disease with a microorganism. 
Koch’s postulates include the identification of the suspect causal organ-
ism in people with the disease and the causation of the illness in an ani-
mal by infection with the organism (Koch, 1884). Unfortunately, such 
experimentally based criteria are of little help in establishing the causality 
of an environmental exposure with a chronic disease. The version of the 
criteria most familiar to epidemiologists and other public health researchers 
is the Bradford-Hill criteria, which are: the strength of the association, con-
sistency, specificity, temporality (logical time sequence), dose-response (bio-
logic gradient), plausibility, coherence, experimental evidence, and analogy 
(Hill, 1965). Although each of these criteria has limitations or exceptions, 
they can be useful guides to assessing the overall evidence. For example, see 
the introductory chapter in the 2004 Surgeon General’s report on smoking 
(DHHS/CDC, 2004). 

As we discussed above, background knowledge about the biologic 
mechanisms by which an exposure might or might not cause disease can 
prove crucial in establishing a causal claim or its negation. The tools of 
experimental biology have been extraordinarily valuable in developing 
insights into human physiology and pathology. Such laboratory tools have 
been extended to explore the effects of putative toxins on human health, 
especially through the study of model systems in other species. The field of 
toxicology has flourished in recent decades, allowing arguments of plau-
sibility to be developed for a range of environmental toxicants. At the 
same time, species can differ in fundamental aspects of physiology (e.g., 
metabolism, hormonal regulation) that limit extrapolation from one species 
to another. 

REALISTIC CAUSAL INFERENCE

Multifactorial Causation

Epidemiologists have long recognized that most chronic diseases, such 
as cancer or coronary heart disease, result from a complex “web of causa-
tion,” whereby one or more external agents (exposures) taken into the body 
initiate a disease process, the outcome of which could depend upon many 
factors including age, genetic susceptibility, nutritional status, immune com-
petence, social factors, and others. Exposures may occur over an extended 
period of time with some cumulative effect, and exposure to multiple agents 
together could result in synergistic or antagonistic effects different from 
what might result from each separately. These general notions were formal-
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ized by Rothman (1976) in a “sufficient component causes model,” which 
postulates that disease can result from a number of different constellations 
of causal factors, each of which may comprise several components (e.g., 
exposure plus susceptibility plus timing) that are all necessary to make them 
a complete cause. This framework is useful in thinking about exposure to 
multiple causal factors. For example, consider the diagram in Figure 7-8. 

Consider the data from a hypothetical epidemiologic study of veter-
ans exposed to some particular exposure illustrated in Table 7-1. In this 
hypothetical example, smoking is a much larger contributor to risk than 
is the military exposure of the participants, but the two factors are not 
confounded, since among the population at risk, the proportion of smok-
ers is the same in the exposed and unexposed. It is also evident that the 
two effects on risk are multiplicative, since individuals with both factors 

Background causes Radiation alone Smoking alone Radiation and
smoking jointly

FIGURE 7-8
TABLE 7-1  Hypothetical Example of Military Radiation Exposure, 
Smoking, and Cancer

Military 
Radiation
Exposure Smoking Habit Number at Risk Cancer Cases Relative Risk

No Never 1,000   10   1
No Current 1,000 100 10
Yes Never 1,000   30   3
Yes Current 1,000 300 30

FIGURE 7-8  Rothman’s sufficient component causes model.
NOTE: Each circle represents a different constellation of factors that is suffi-
cient to produce disease; within any circle, the sectors represent specific factors 
that are all necessary to comprise a complete cause. Blank space represents host 
susceptibility plus background exposures; vertical bars, ionizing radiation; horizontal 
bars, tobacco smoking; cross-hatched, joint action of smoking and radiation. 
SOURCE: Rothman, 1976.
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have an RR of 30, the product of the RR for smoking (10) and for military 
exposure (3). In other exposure situations, the pattern of combined effects 
could be less than multiplicative, or greater. Two specific models have spe-
cial relevance to compensation policy. The first is the multiplicative model 
just illustrated, which can be represented mathematically as

RRmult = RRE × RRS ,

where RRE is the RR for exposed nonsmokers relative to nonexposed non-
smokers, and RRS is the RR for unexposed smokers relative to unexposed 
nonsmokers. Under this model, the effect of exposure is the same in both 
nonsmokers (RRE|NS = 3) and smokers (RRE|S = 30/10 = 3). The other 
important situation is an additive model of the form:

RRadd = 1 + (RRE − 1) + (RRS − 1)

= RRE + RRS − 1

In other words, the risk from exposure to both factors is the background 
risk plus the sum of the additional risks from each factor separately. Thus, in 
our hypothetical example, if the single-factor risks were as before, we would 
have expected an RR for exposed smokers of 1 + (10 − 1) + (3 − 1) = 12, 
rather than 30 as above. Under this model, the excess RR (ERR = RR − 1) 
for exposure is the same in nonsmokers (ERRE|NS = 3 − 1 = 2) and smokers 
(ERRE|S = 12 − 10 = 2). Of course, the actual joint effect could be different 
from either of these specific models. The effect when both exposures are 
present could be less than additive (e.g., a joint RR of 11), greater than 
multiplicative (e.g., 50), or in between (e.g., 20).

Models for Interaction

Epidemiologists use the term interaction (or effect modification) to 
denote the departure of the observed joint risk from what might be expected 
based on the separate effects of the factors. However, any estimate of inter-
action is model specific, meaning it depends on what model of interaction 
we expect (multiplicative, additive, or some other). In claiming interaction, 
one must therefore specify the model for the combined effect from which 
the observed data deviate. For example, one could define a multiplicative 
interaction RR as

RR
RR

RR RRInt(mult)
joint

E S

=
×

,
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or an additive interaction RR as RRInt(add) = RRjoint − RRE − RRS + 1. For 
the data illustrated in the table above, RRInt(mult) = 30/(3 × 10) = 1 and 
RRInt(add) = 30 – 3 – 10 + 1 = 18, indicating no departure from a multiplica-
tive model but a large positive deviation from an additive model. Likewise, 
if the joint RR were 12, the multiplicative interaction RR would have been 
0.4 and the additive interaction would have been 0, indicating a less than 
multiplicative joint effect and no departure from an additive model. These 
concepts have natural extensions to more than two risk factors, such as the 
inclusion of main effects and interactions in the widely used logistic regres-
sion model (which assumes a multiplicative model). The following chapter 
will describe how these parameters can be used to estimate the proportion 
of disease among exposed individuals that is attributable to the separate or 
joint action of each factor or other unknown factors, and the relevance and 
limitations of such estimates for attributing causation in individuals. 

The previous example presumes that there is no causal connection 
between the military exposure and smoking—that prior smoking did not 
cause the individual’s exposure in the military or vice versa. If this assump-
tion did not hold, a very different analysis would be required. For example, 
suppose a nonsmoking recruit received a serious battle wound leading to 
amputation, which subsequently caused him or her to take up smoking 
for self-medication, and he or she ultimately developed lung cancer. In this 
case, one might wish to estimate the direct effect of battle trauma on lung 
cancer risk and the indirect effect mediated through smoking. However, as 
a policy matter, one might conclude that both routes were ultimately the 
consequence of battle trauma and should not be distinguished for the pur-
pose of deciding on compensation. In other words, an individual’s smoking 
history would be irrelevant.

UNCERTAINTY

The science of estimating the causal influence of an exposure on dis-
ease, especially in cases where controlled experiments are not feasible, is 
fraught with uncertainty. Dealing with uncertainty in a principled way is 
one of the goals of statistics, however, and it need not stop us from ratio-
nal analysis. In this section we provide a framework for dealing with the 
uncertainty inherent in assessing population causal claims. 

There are three levels of uncertainty in making a case for a service 
connection:

1.	 Uncertainty as to the correct causal model 
2.	 Uncertainty as to the statistical (parameter) estimates within each 

model
3.	 Uncertainty about the specifics of a given individual within a group
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The uncertainty about the correct causal model involves uncertainty 
about whether exposure in fact causes disease at all, about the set of 
confounders that are associated with exposure and cause disease, about 
whether there is reverse causation, about what are the correct parametric 
forms of the relations of the exposure and confounders with outcome, and 
about whether there are other forms of bias affecting the evidence. One 
currently used method for making this uncertainty clear is to draw a set of 
causal graphs, each of which represents a particular causal hypothesis, and 
then consider evidence insofar as it favors one or more of these hypotheses 
and related graphs over the others. We explain this approach in more detail 
in Appendix J. 

Uncertainty about the model is not just limited to the qualitative causal 
structure; however, it also involves uncertainty about the parametric form 
of the model specified, the variables included, whether or not measurement 
error is modeled, and so on. When mechanistic knowledge exists, this sort 
of uncertainty is mitigated. Nevertheless, model uncertainty is perhaps the 
most important level of uncertainty.

By comparison, uncertainty about the parameter estimates (regres-
sion coefficients) for a given model is a well-studied problem. When the 
newspaper reports that a political poll is accurate to “within 3 percent-
age points,” it is attempting to report the uncertainty about the estimates 
reported by the poll. When a regression analysis produces an OR with a 
confidence interval (or a P value for the null hypothesis that the adjusted 
association is 0), it is quantifying the uncertainty caused by the random 
variation that we can expect from one sample to another. The important 
point is that these reports of uncertainty are conditional on the model 
being a sufficiently adequate approximation to reality so that the inferences 
drawn are valid. The overall scientific inference involves uncertainty about 
the model and uncertainty about the parameter estimates given each model. 
It would be misleading to neglect the uncertainty in the model, and act as if 
the P values and confidence intervals delimit and make precise our overall 
scientific uncertainty. 

Beyond model uncertainty and parameter estimate uncertainty, we still 
face uncertainty in applying causal models to individuals. Typically, causal 
models will provide a prediction about the chances or severity of a disease, 
given a particular level of exposure and particular levels of the covariates, 
such as age or social class. For a given individual, we might be highly 
uncertain about the level and duration of exposure, as well as uncertain 
about the levels of covariates. This level of uncertainty is also important to 
presumptive service-connection claims, as will be discussed in the following 
chapter. 

There are two systematic, quantitative approaches for including uncer-
tainty about the model into an assessment of overall uncertainty about a 
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causal inference. The first is sensitivity analysis, and the second is model 
averaging. In sensitivity analysis we attempt to quantify the sensitivity of 
the parameter estimate to assumptions about the model. In model averag-
ing, we attempt to provide an overall uncertainty to our estimate by cal-
culating the estimate of a common parameter or target and its uncertainty 
for each model we consider plausible, and then by weighting the estimates 
and the uncertainties by the likelihood of each model. It is essential that 
the target have the same interpretation in each model, or the combination 
of the estimates has no meaning.

Sensitivity Analysis

In general, sensitivity analysis is the attempt to systematically explore 
the sensitivity of a particular parameter estimate, such as the size of the 
causal effect of exposure on disease, to any assumption made in the model 
that itself can be parameterized. For example, in estimating the effect of 
cumulative exposure to lead on a child’s IQ, cumulative lead exposure for a 
child can be estimated by measuring the concentration of lead in the child’s 
shed baby teeth. Although this is an improvement over blood lead, it still 
involves error. The estimate of the effect of lead on IQ is sensitive to the 
amount of measurement error for lead, and the measurement error can be 
parameterized by the proportion of the variance of the measure thought to 
come from actual lead as opposed to error. A sensitivity analysis can then 
be performed by estimating the effect under a progression of levels of this 
proportion. This provides an assessment of how sensitive the causal esti-
mate is to various possibilities of measurement error, and provides a more 
specific statement of what we must assume about measurement error in 
order to reach the causal conclusion.

Paul Rosenbaum (2002), along with Charles Manski (1995), has devel-
oped a formal technique for dealing with unmeasured confounding or bias 
called sensitivity analysis. The essential idea is to make reasonable guesses 
as to the range of distortion introduced by possible bias, or the extent of 
the associations underlying the possible confounding, and then to use those 
ranges to estimate the extent to which the outcome is changed under those 
assumptions. If the outcome turns out to be highly sensitive to such pertur-
bations, one cannot rule out the possibility that the observed association is 
an artifact. Greenland (1996) has advocated a more quantitative approach 
to directly modeling multiple sources of bias.

Model Averaging

Given the inevitable uncertainty about the true model form, one might 
ask how one should estimate the RR (or any other epidemiologic effect 
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parameter derived from it) and an “honest” confidence interval for it that 
allows for this possibility of model specification error. There is an extensive 
statistical literature on this question (see, for example, Leamer, 1978, for 
a review), but in practice the problem is frequently ignored. Frequently, an 
investigator conducts a number of different analyses and ends up report-
ing only a single best-fitting model, or the one model in which he or she 
holds the strongest belief, and reports confidence limits on the parameters 
of that model, as if it were the “true” model. Sometimes, an investigator 
may acknowledge this uncertainty about model form by reporting a range 
of alternative models in the spirit of sensitivity analyses. This can leave the 
reader uncertain as to which specific set of estimates to use, particularly 
if several models fit the data more or less equally well, yet yield differ-
ent estimates and confidence intervals. There are, however, a number of 
formal approaches to this problem from both a frequentist and a Bayesian 
perspective. 

Here we summarize briefly just one of them, known as Bayesian 
model averaging (Hoeting et al., 1999). Suppose we have a parameter 
of interest β (measuring the effect of interest) and a range of alterna-

tive models m = 1, . . . M, yielding estimates β̂m and variances estimates 

V M mm = =( )var β̂ of this same parameter under different models (for this 
purpose, we must assume that the parameter β  has the same interpretation 
under each of the different models, i.e., the effect of exposure, conditional on 

different choices of adjustment variables). Let
 
πm M m D= =( )Pr denote the 

posterior probability of model m, conditional on the observed data D. Then 
a natural estimator of β  

that takes account of model uncertainty might be 

a simple weighted average of the model-specific estimators, β β π= ∑ ˆ
m mm

with variance var .β β β π( ) = + −( )( )∑ Vm mm m

2
 This formal approach has 

seldom been applied in practice, although there are some examples in the 
epidemiologic literature. It also has some potential for misuse, as when 
many highly correlated variables are considered in the same model. In 
model averaging, we attempt to deal with model uncertainty by calculating 
the estimate of a common parameter or target and its uncertainty for each 
model we consider plausible, and then by weighting the estimates and the 
uncertainties by the likelihood of each model. 

SUMMARY

Presumptive service-connection decisions depend on population-level 
causal questions, such as “Were some cases of type 2 diabetes among Viet-
nam veterans caused by exposure to dioxin in Agent Orange during military 
service?” Assessing such claims scientifically involves review of statistical 
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evidence from epidemiologic studies, evidence from experiments in other 
animals, and mechanistic evidence from basic biologic science. 

Because a statistical association between exposure and disease does 
not prove causation, plausible alternative hypotheses must be eliminated 
by careful statistical adjustment and/or consideration of all relevant scien-
tific knowledge. Epidemiologic studies that show an association after such 
adjustment, for example through multiple regression or instrumental vari-
able estimation, and that are reasonably free of bias and further confound-
ing, provide evidence but not proof of causation. Mechanistic knowledge 
about how particular agents might produce adverse health effects provides 
further evidence. For example, ionizing radiation is known to cause muta-
tions in DNA that can result in cancer. Animal studies may provide further 
evidence by showing that an agent may induce in several different species 
the same effect observed in human studies, and by a mechanism that is 
conserved across species with key features of the mechanism observed. 

Uncertainty about a causal claim can arise because of uncertainty 
about which among a set of plausible models is correct, or because of 
uncertainty about study design and execution, or it can arise because of 
uncertainty caused by simple sampling variability, or it can arise because 
of uncertainty in the basic science required to analyze other evidence. The 
overall uncertainty about the claim in question is some combination of all 
of these uncertainties.

Additional information on causation and statistical causal methods can 
be found in Appendix J.

REFERENCES

DHHS/CDC (Department of Health and Human Services/Centers for Disease Control and 
Prevention). 2004. The health consequences of smoking: A report of the Surgeon Gen-
eral. http://www.cdc.gov/tobacco/data_statistics/sgr/sgr_2004/index.htm (accessed July 
27, 2007).

Doll, R., and A. B. Hill. 1954. The mortality of doctors in relation to their smoking habits; A 
preliminary report. British Medical Journal 1(4877):1451-1455.

EPA (Environmental Protection Agency). 2005. Guidelines for carcinogen risk assessment. 
EPA/630/P-03/001B. Washington, DC: Environmental Protection Agency. http://www.
epa.gov/IRIS/cancer032505.pdf (accessed March 1, 2007).

Golden, R., D. Pyatt, and P. G. Shields. 2006. Formaldehyde as a potential human leukemogen: 
An assessment of biological plausibility. Critical Reviews in Toxicology 36(2):135-153.

Greenland, S. 1996. Basic methods for sensitivity analysis of biases. International Journal of 
Epidemiology 25(6):1107-1116

Greenland, S. 2000. An introduction to instrumental variables for epidemiologists. Interna-
tional Journal of Epidemiology 29(4):722-729; Erratum 29(6):1102. 

Greenland, S., and D. Thomas. 1982. On the need for the rare disease assumption in case-
control studies. American Journal of Epidemiology 116(3):547-553.



Copyright © National Academy of Sciences. All rights reserved.

Improving the Presumptive Disability Decision-Making Process for Veterans 
http://www.nap.edu/catalog/11908.html

174	 IMPROVING THE PRESUMPTIVE DISABILITY DECISION-MAKING PROCESS

Hill, A. B. 1965. The environment and disease: Association or causation? Proceedings of the 
Royal Society of Medicine 58:295-300.

Hoeting, J., D. Madigan, A. Raftery, and C. Volinsky. 1999. Bayesian model averaging. Sta-
tistical Science 14:382-401.

IARC (International Agency for Research on Cancer). 1999. IARC monographs on the evalua-
tion of carcinogenic risk to humans: Re-evaluation of some organic chemicals, hydrazine 
and hydrogen peroxide. Vol. 71. http://monographs.iarc.fr/ENG/Monographs/vol71/
volume71.pdf (accessed March 1, 2007). 

IARC. 2006a. IARC monographs on the evaluation of carcinogenic risk to humans: Form-
aldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. Lyon, France: International 
Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Monographs/vol88/
volume88.pdf (accessed August 22, 2007).

IARC. 2006b. IARC monographs on the evaluation of carcinogenic risk to humans: Preamble. 
Lyon, France: International Agency for Research on Cancer. http://monographs.iarc.
fr/ENG/Preamble/CurrentPreamble.pdf (accessed March 1, 2007).

IOM (Institute of Medicine). 2006a. Food marketing to children and youth: Threat or op-
portunity. Washington, DC: The National Academies Press. 

IOM. 2006b. Asbestos: Selected cancers. Washington, DC: The National Academies Press.
IOM/NRC (National Research Council). 2005. Dietary supplements: A framework for evalu-

ating safety. Washington, DC: The National Academies Press. 
Kennedy, P. 2003. A guide to econometrics. 5th ed. Cambridge, MA: MIT Press.
Koch, R. 1884. Die aetiologie der tuberkulose. Mittheilungen aus dem Kaiserlichen Gesund-

heitsamte 2:1-88.
Leamer, E. E. 1978. Specification searches: Ad hoc inference with nonexperimental data. New 

York: John Wiley & Sons.
Manski, C. 1995. Identification problems in the social sciences. Cambridge, MA: Harvard 

University Press.
Mill, J. S. 1862. A system of logic: Ratiocinative and inductive, being a connected view of the 

principle of evidence, and the methods of scientific investigation. 5th ed. London, UK: 
Parker, Son and Bowin. 

NTP (National Toxicology Program). 2005. Report on carcinogens. 11th ed. Washington, DC: 
National Toxicology Program. http://ntp.niehs.nih.gov/index.cfm?objectid=32BA9724-
F1F6-975E-7FCE50709CB4C932 (accessed March 1, 2007).

NTP CERHR (NTP Center for the Evaluation of Risks to Human Reproduction). 2003. 
NTP-CERHR Monograph on the Potential Human Reproductive and Developmental 
Effects of Di-n-Butyl Phthalate (DBP). Research Triangle Park, NC: NTP CERHR, U.S. 
Department of Health and Human Services.

NTP CERHR. 2005. Guidelines for CERHR Expert Panel Members. Research Triangle Park, 
NC: NTP CERHR, U.S. Department of Health and Human Services.

Rosenbaum, P. R. 2002. Observational studies. 2nd ed. New York: Springer-Verlag. 
Rothman, K. J. 1976. Causes. American Journal of Epidemiology 104(6):587-592.
Rothman, K. J. 2002. Epidemiology: An introduction. Oxford, UK: Oxford University 

Press.
Straif, K., R. Baan, Y. Grosse, B. Secretan, F. E. Ghissassi, and V. Cogliano. ���������������� 2005. Carcinoge-

nicity of polycyclic aromatic hydrocarbons. Lancet Oncology 6(12):931-932.


